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Abstract

A mechanical system with perfect constraints can be described, under some mild assump-
tions, as a constrained Hamiltonian system (M,Q, H, D, W): (M, Q) (the phase space) is
a symplectic manifold, H (the Hamiltonian) a smooth function on M, D (the constraint
submanifold) a submanifold of M, and W (the projection bundle) a vector sub-bundle of
TpM, the reduced tangent bundle along D. We prove that when these data satisfy some
suitable conditions, the time evolution of the system is governed by a well defined differen-
tial equation on D. We define constrained Hamiltonian systems with symmetry, and prove
a reduction theorem. Application of that theorem is illustrated on the example of a convex
heavy body rolling without slipping on a horizontal plane. Two other simple examples show
that constrained mechanical systems with symmetry may have an attractive (or repulsive)
set of relative equilibria.
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1. Introduction

Let (M,€2) be a symplectic manifold on which a Lie group G acts by a Hamiltonian
action, with an equivariant momentum map J. Let p be a regular (or weakly regular) value
of J. Under some general assumptions, the very important concept of symplectic reduction,
due to K. Meyer [24], J. Marsden and A. Weinstein [22], allows us to obtain from these data
a new symplectic manifold (P, = J~'(u)/G,,p), called the reduced symplectic manifold
at u. Any smooth G-invariant Hamiltonian H on M induces a smooth reduced Hamiltonian
Hp on P,, and the integral curves of the Hamiltonian vector field Xy associated with H
contained in J~!(u) project onto the integral curves of the Hamiltonian vector field Xz,
associated with Hp. In particular, relative equilibria of Xz contained in J~1(u) project
onto equilibria of Xp,, i.e., onto points of P, where Xy, vanishes. Stability properties
of these relative equilibria are closely related to stability properties of the corresponding
equilibria in P,.

Symplectic reduction plays an important part in symplectic geometry, in analytical
mechanics and in mathematical physics. It has been extended to various more general
situations, in which the symplectic manifold (M, ) is replaced by a Poisson manifold
(J. Marsden and T. Ratiu [21]), a contact or a cosymplectic manifold (C. Albert [2]), a
Jacobi manifold (K. Mikami [25], J. Nunes da Costa [27]). M. Kummer has given a nice
description of the reduced symplectic manifold when (M, Q) is the cotangent bundle of a
principal G-bundle [14]. A. Weinstein has used the symplectic reduction procedure [39] in
the minimal coupling construction introduced by S. Sternberg [30]. In this paper, in view of
applications to mechanical systems with constraints, we introduce still another extension of
the reduction concept. We were led to that extension by an attempt to understand the very
remarkable stability properties of some nonholonomic mechanical systems such as the celtic
stones, discussed a century ago by G. T. Walker [36, 37]. The reader is referred to J. Walker
[38] for a more recent and very clear (although nonmathematical) presentation of these
properties. A different approach of the reduction procedure for noholonomic mechanical
systems was proposed earlier by L. Bates and J. Sniatycki [4].

The paper is organized as follows.

In Section 2, we present an intrinsic formulation of the dynamics of a constrained
mechanical system. It is equivalent to the formulation of A. M. Vershik and L. D. Faddeev
(see [33, 34, 35] and the references therein), i.e., it leads to the same equations, but
it is presented under a somewhat different manner more convenient for our particular
application.

Section 3 considers an action of a Lie group on a constrained mechanical system, defines
the reduction procedure and proves its main properties (theorem 3.5).

Section 4 illustrates the reduction procedure with the classical example of a heavy convex
body which rolls without slipping on a horizontal plane. If the body has a symmetry
axis, and if the principal directions of curvature of the surface of the body at the lowest
point on that axis differ from the principal directions of inertia, the stability properties of
stationary rotations around that axis, set in a vertical position, may be quite complicated,
very different from those of the stationary motions of a heavy body around a fixed point.
The geometric setting presented here may help to understand these properties, which have
been already investigated analytically by G. T. Walker almost a century ago [37], and
more recently for example by A. V. Karapetian [9,10] and A. P. Markeev [17] in the linear
approximation, M. Pascal for the asymptotic behaviour [28].
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Finally Section 5 deals with two simple examples. The first one shows that a constrained
mechanical system, even when the constraint is holonomic, may have two sets of relative
equilibria, one of which is attractive and the other repulsive. An unconstrained conservative
mechanical system, whose relative equilibria are neither attractive nor repulsive, cannot
exhibit such a behaviour. The second example shows that a constrained Hamiltonian
system, in the sense of Definition 3.1, may have an attractive equilibrium.

For the concept of Poisson manifold, the reader is referred to A. Lichnerowicz [16] and
A. Weinstein [40]. The general definitions, notations and sign conventions about symplectic
and Poisson manifolds are those of [15], not very different from those of Abraham and
Marsden [1].

2. The dynamics of constrained dynamical systems: an intrinsic formulation

We present here an intrinsic formulation of the dynamics of a constrained mechanical
system similar to that of A. M. Vershik and L. D. Faddeev [33, 34, 35]. This formulation
is valid for very general constraints, which may be holonomic or nonholonomic, and
eventually not linear in the velocities. For the sake of simplicity we present it for time-
independent constraints, but its generalization to time dependent constraints, and even
to active constraints [18, 19, 7] should be easy. For constraints linear in the velocities,
this formulation is equivalent to the classical one, which may be found for example in the
treatise of Whittaker [42]. We do not follow here the other approach to nonholonomic
constraints (the so called “vakonomic” approach) proposed by V. I. Arnold, V. V. Kozlov
and A. I. Neishtadt [3] which leads to equations of motion not equivalent to the classical
ones. A very thorough discussion of constrained systems may be found in Chapter 1 of
the book by N. Woodhouse [43]. The reader is referred to S. Benenti [5], F. Cardin and
G. Zanzotto [6], P. Dazord [7], J. Koiller [11], P. S. Krishnaprasad [12] and R.Yang [13, 44],
E. Massa and E. Pagani [23], for other approaches to the dynamics of constrained systems
and applications.

2.1. Definition. A constrained mechanical system is a triple (@, L,C), where Q
is a smooth manifold (the configuration space), L : TQ — R a smooth function (the
Lagrangian), and C a smooth submanifold of the tangent bundle T'Q (the constraint
submanifold of the system). The tangent bundle TQ and the cotangent bundle T*Q of
the configuration space are called the space of kinematical states and the phase space,
respectively.

We shall denote by p: TQ — @ and ¢ : T*Q — () the canonical projections.

2.2. The Lagrange differential. =~ We recall that the Lagrangian L defines a map A(L),
called the Lagrange differential of L. This map is defined on the space J2(R,0; Q) of 2-jets
at the origin of smooth parametrized curves in Q). It takes its values in the cotangent bundle
T*Q, and it is fibered over (). This map can be defined in a coordinate-free manner [8,
29, 31, 32|, but for simplicity we recall here only its expression in local coordinates. Let
(z',...,2") be the local coordinates in a chart of Q, (z!,...,z" v},...,v"), (zt,..., 2",
vl,...,v"al,. .., a") and (x!,...,2", p1,...,pn) the local coordinates in the associated
charts of TQ, J?(R,0;Q) and T*Q, respectively. Let ¢ : I — @Q be a smooth parametrized
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curve in (), with I an open interval in R such that 0 € I. We shall write

zi(t) =atoc(t), o'(t)= %(x’ oc(t)), a'(t)= j—; (z* oc(t)).

The local expression of the Lagrangian is a function L of the local coordinates (z1,...,z",
vl,...,v™) in TQ. Then the local coordinates (z',..., 2", p1,...,pn) of A(L)(jic) are

zt = % 0 ¢(0),

pi= (5 (356060 - o (5(6).006)))

)
s=0

where z(s) and v(s) stand for (z'(s),...,2™(s)) and (v'(s),...,v™(s)), respectively. As is

well known, the z* and p; given by these formulae depend only on the local coordinates
z%(0), v*(0) and a’(0), 1 < i < n, of the 2-jet j2c of c at the origin.

2.3. The Lagrange equations of motion. In the Lagrangian formalism, the equations
of motion of the constrained mechanical system (Q, L, C') can be written as

AL) = f, (1)

where A(L) is the Lagrange differential of L discussed in Section 2.2. On the right hand side,
f is the constraint force. It is in general unknown, but must satisfy some conditions, which
depend on the physical properties of the constraint. These conditions will be indicated in
Section 2.6 for a particular class of constraints (the so called perfect constraints). A motion
of the system, i.e., a solution of (1), is a smooth curve ¢ : I — C, where I is an open

de(t
interval in R, such that, for each ¢t € I, (;(t) lies in C' and the constraint force f(t), defined
by
A(L)(5%c(t)) = f(t) (2)

satisfies these conditions.

2.4. The Legendre transformation. @ We recall that, associated with the Lagrangian
L, there is a map L : TQ) — T*(Q, called the Legendre transformation. This map is such
that, for each v € TQ, L(v) € T;(U)Q is the differential at v of the restriction of L to the
tangent space T (,)Q.

2.5. Definitions. Let (@, L, C) be a constrained mechanical system.

1. The constraint C is said to be reqular if there exists a submanifold ;1 of ) such that
the constraint submanifold C' is contained in T'Q; (considered as a submanifold of T'Q) and
that the restriction to C' of the canonical projection p : T'() — () is a submersion of C onto

Q1.

2. The Lagrangian L is said to be regular if the Legendre transformation £ : TQ) — T*Q
associated with L is a diffeomorphism.
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3. The constrained system (Q,L,C) is said to be regular if the constraint and the
Lagrangian are both regular.

2.6. Examples and remarks. Let (Q, L,C) be a constrained mechanical system.

1. The constraint is said to be purely geometric if there exists a submanifold )1 of
Q@ such that C = TQ,. A purely geometric constraint is automatically regular. Such a
constraint can be eliminated by choosing ()1 as configuration space instead of Q).

2. The constraint is said to be purely kinematic if p(C) = Q, i.e., if every point of @ is
a possible configuration of the system. Such a constraint is regular if the restriction to C'
of the canonical projection p : TQ) — @ is a submersion of C' onto Q.

3. Very often, the constraint submanifold C' is a vector sub-bundle of T'(). Such a
constraint is purely kinematic and regular. When in addition the sub-bundle C is completely
integrable, we shall say that the constraint is holonomic. In such a case C defines a foliation
of ). If the configuration of the system is in a leaf (); of that foliation at a particular time
to, it is in ()7 for all times. The constraint submanifold C' may then be replaced by T'Q1,
which is now a purely geometric constraint. However, this procedure is suitable only to
deal with the motions of the system for which the configuration is in the particular leaf @),
of the foliation of ) determined by C'; it is not suitable to deal with stability properties,
since motions of the system for which the configuration is in leaves of that foliation near
(1, but distinct from (Q;, must be taken into account.

4. When the constraint is regular, by taking @Q; = p(C) instead of @) as configuration
space, we can replace the system by a completely equivalent one in which the constraint is
purely kinematic and regular. However, in many examples, such as the one dealt with in
Section 4, it is more convenient to keep as configuration space a manifold () strictly larger
than the set @1 = p(C) of all the possible configurations compatible with the constraint.

2.7. Admissible infinitesimal virtual displacements. We assume now that (Q, L, C)
is a regular constrained mechanical system. Let v € C' be any point of the constraint
submanifold, and z = p(v) € Q. Since p|¢ is a submersion of C onto the submanifold
@1 = p(C) of Q, C, = CNT,Q is a submanifold of T,Q,. Therefore the space T,C,,
tangent at v to a submanifold of a vector space, can be considered as a vector subspace of
that vector space T,(Q1, which is itself a vector subspace of T,(). The vector space T,C';
is called the space of admissible infinitesimal virtual displacements at v. Its annihilator
V, = (T,C,)? is the vector subspace of all n € T¥Q such that (n,w) = 0 for all w € T,C,.
We are led to the following definition.

2.8. Definition. The constraint is said to be perfect if, for each v € C, x = p(v) € Q, the
constraint force f takes its value in the annihilator V,, = (T},C;)° of the space of admissible
infinitesimal virtual displacements T,C, when the kinematical state of the system is v.

The above definition is in agreement with the principle (called the d’Alembert-Lagrange
principle in Arnold, Kozlov and Neishtadt [3]) which states that when a constraint is perfect,
the virtual work of the constraint force for any infinitesimal virtual displacement compatible
with the constraint vanishes.



6

2.9. The map A\. For any vector bundle (£, 7, Q) over the base manifold @, let E xg E
be the fibered product of E with itself over ), and A : Exg E — TE be the map such that,
for any x € @, v and w € E,, A(v,w) is the vector equal to w, tangent at v to the fiber
E.. Since F, is a vector space, we have identified it with its tangent space at v, T, F/,. The
map A is an injective vector bundle map (E x¢ E being considered as a vector bundle over
E, with canonical projection (v,w) — w), which maps E xg E onto the vertical bundle
VE = ker(T'w). In the following definition we use the map A for the cotangent bundle

(T*Q, 4, Q).

2.10. Definitions. Let us assume that the constrained mechanical system (@, L, C) is
regular.

1. Theimage D = L(C) of the constraint submanifold C by the Legendre transformation
will be called the Hamiltonian constraint submanifold.

2. For any p € D, the vector subspace W), of the tangent space Tp,(T*Q), defined by

Wy ={Ap,n) [ n€ V10 },

will be called the projection space at p. The union

w=|Jw,
peD

of all the projection spaces at points of D is a vector sub-bundle of Tp(T*Q), which will
be called the projection bundle.

We observe that W is a subset of the vertical bundle ker(7'q).

2.11. Definition. Let v € TQ be a kinematic state, z = p(v) € @, and L, = L |,

o
The Lagrangian L is said to be normal at v if the matrix
0%L,
——(v) |, 1<, <n,
<av’81ﬂ( ) =hl=
of second partial derivatives of L, at v, with respect to the coordinates v!,...,v™ in T,Q

associated with a basis of that vector space, is positive definite.

This definition has indeed an intrinsic meaning, since the positive definiteness of that
matrix does not depend on the choice of the basis of T,(Q).

2.12. Proposition. We assume that the constrained mechanical system (Q,L,C) is
reqular and that the Lagrangian L is normal at every point of the constraint submanifold C'.
Then the sum of the vector sub-bundles TD and W of Tp(T*Q) (restriction of the tangent
bundle T(T*Q) to the Hamiltonian constraint submanifold D) is a direct sum, and

TD®W = (Tpq) H(TQ1),

where Q1 = p(C) is the submanifold of Q introduced in Definition 2.5.
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Proof. Letdim@ = n,dim@); = m < n. Since the property to be proven is local, we can
use a chart of @ adapted to the submanifold @, with local coordinates (z) = (z!,...,z").
In that chart Q1 is locally defined by the equations

r;=0form+1<i<n.
Let (z,v) = (z1,...,2", 01, ...,o") and (x,p) = (z',...,2™, p1,-..,pn) be the local coor-
dinates in the assciated charts of T'QQ and T*(Q, respectively. The constraint submanifold
C' is contained in T'Q)q, therefore can be locally defined by the 2(n — m) + k equations

r*=0and v =0form+1<i<n, ®(z,v)=0, 1<a<k.

Since ¢ | o 1s a submersion of C' onto @1, the functions ® can be chosen in such a way that
the matrix

510X )
(W.), I<a<k, 1<j<m, 3)

is of rank £ at all points of C. The tangent space at (z,v) to the constraint submanifold C
is the set of all vectors
- . 0 . 0
A'— + B'—
; ( oz* * 81}’)

whose components A® and B? satisfy

- QP> 0P
A - B* - = I1<a<k. 4
Z( o+ W) 0, 1<ac<k (4)

=1
Since D = L(C), and since £ maps (z,v) € C onto (z,p) € D, with

_ O0L(z,v)
bi = T vt

the tangent space at (z,p) to the Hamiltonian constraint submanifold D is the set of all
vectors
m n n
. 0’L 0 4 0’L 0
A 8i + Earicwall B B P90t I
ox = dv10x* Op; = Ov?10v* Op;

=1

with A® and B? satisfying (4).
The fiber W, ,y of the projection bundle at point (x,p) € D is generated by the n—m+k
vectors
m «a
iform#—lﬁz’ﬁnand 8q).ifor1§a§k.
op; — ovt Op;

1=

The fiber at (z,p) € D of (Tpq)~1(T'Q1) is generated by the vectors

iforlgigmandiforlgjgn.
Ox* Op;
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That fiber is of dimension n +m, and it contains T\, ,)D and W, ;, whose dimensions are
2m—k and n—m+k, respectively. Therefore we have only to prove tha,fu Wap) NT(ep) D =
{0}, i.e., that the only A\, (1 <a <k), pj (m+1<j<n), A and B* (1 <i < m) which
satisfy (4) and

k n
0P~
> | S ;
— = ovd 8;0 Pt 8 8;6
~x~ [ 4i O°L , 0°L 1\ 0
A'——— + B'—— )
+1221;( Ov’ 0x? T 81}38111) apj( )
vanish identically. But (5) implies
At=0for1<i<m,
and
b 90e m 9L
. — 1 )
;Aamﬁ-ﬂg—;B T for 1 <j<n, (6)
where we have set p; = 0 for 1 < j < m. Since the A® vanish, (4) implies
;00
B'— =0.
Y Bl =0 (7)

=1
Multiplying Equation (6) by B’, summing up over j for 1 < j < m and using (7), we obtain

N, 0L
ZZB BJ ovtovI =0. (8)

=1 j=1

Since L is normal at all points of C, the above equality implies that B* = 0 for all i,
1 < i < m. Then, since the matrix (3) is of rank %k at all points of C, (6) implies that
A*=0forall o, 1 <a<k,and that yyj=0forall j, m+1<j<n. [0

2.13. Remark. The property of L used in the proof is slightly less restrictive than
the property stated in Definition 2.11, since the indices ¢ and j in Equation (8) satisfy
1 < 14,7 < m, instead of 1 < 4,5 < n. Therefore it should be possible to weaken a little
Definition 2.11.

2.14. The symplectic structure of 7*() and the Hamiltonian vector field X .

The assumptions are the same as in Proposition 2.10. We define the Hamiltonian
H : T*Q) — R of the system by setting

H = (i(Z)dL—L)oL™",
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where Z is the Liouville vector field on T'Q). In local coordinates

n n
Z = § vza’vi ) H(SL‘,p): E /UZpi_L(:Ua/U)a
=1 =1

where, in the right hand side, the local coordinates (x,v) in T must be expressed in terms
of the local coordinates (x,p) in T*Q, by means of the diffeomorphism £71.

Let a be the Liouville 1-form and 2 = da the canonical symplectic 2-form on 7*@Q). In
local coordinates,

a:ipidxi, Q:idpi/\daci.
i=1

=1

Let Xy be the Hamiltonian vector field associated with H, i.e., the vector field such
that
i(Xg)Q=—dH.

2.15. Proposition. Under the assumptions of Proposition 2.12, the restriction Xg|p
of the Hamiltonian vector field to the Hamiltonian constraint submanifold D splits into a
sum

Xy|lp =Xp + Xw,

where Xp is a smooth vector field tangent to D and Xw a smooth section of the projection
bundle W. The vector field Xp will be called the constrained Hamiltonian vector field, and
the opposite —Xw of Xw, the constraint force field.

Proof. 1In view of Proposition 2.12, it is enough to prove that Xg|p is a section of
TD & W = (Tpq)~Y(TQ:), or equivalently that, for any z € D, Tq(XH(z)) is tangent to
the submanifold 1. As in the proof of Proposition 2.12, we use a chart of ) adapted to
the submanifold @)1, and the associated charts of T'QQ and T*(Q). The vector field Xz may

be written as
" (0H 0 O0H 0
Xu = Z (8pi oxi Ozt 8—pl> )

=1

Let (x,v) be a point of C. Since C C TQ1, we have v* = 0 for m+1 < i < n. Let (z,p) € D
be the image of (z,v) bu the Legendre transformation. We have, for all i, 1 <1i < n,

OH i
=,
op;
therefore
oH )
=0 for m+1<i1<n.
Op;

This shows that the projection of Xg|p on @ is tangent to Q1. [

2.16. Theorem. We assume that the constrained mechanical system (Q,L,C) is
reqular, that the Lagrangian L is normal at every point of the constraint submanifold C,
and that the constraint is perfect. A parametrized curve c: I — @Q (with I an open interval
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in R) is a motion of the system if and only if its canonical lift ¢ to the cotangent bundle,

defined by

de
= LoX
T

1s an integral curve of the constrained Hamiltonian vector field Xp. When such is the case,
the constraint force f(t) at each time t € I is the unique element in T t)Q such that

A, 1(8) = —Xw (@(1))
Proof. In local coordinates (z¢,v%) in TQ, (z%,p;) in T*Q, related by the Legendre

transformation L, it is well known that the constrained Lagrange equations

i oL B oL
dt Ovt  Oxt

:fi7 1S’L§n,

are equivalent to the constrained Hamilton’s equations

da' _ o
dt N 8]91' ’
dpi . OH
dt O i

Let us assume that ¢t — c(t) is a motion of the system. Its canonical lift ¢t — ¢(t) to the
cotangent bundle lies in the Hamiltonian constraint submanifold D. Therefore, for each
t € I, the vector

z::(gf g+ (s + ) ) (00) = X (Zfz >~<t

is tangent to D. Since the constraint is perfect, the second term in the right hand side of
the above expression is in W~ ) and we have

X (2(0)) = 2_3 (5 ot (5w ) 5 ) @),

X (Z fim- ) (@)

This proves that ¢ — ¢(¢) is an integral curve of Xp and that, for each ¢ € I, A(¢(t), f(t)) =

—Xw (c(t)).
Conversely, if ¢t — ¢(t) is an integral curve of Xp, the constrained Hamilton’s equations
above are satisfied, with
oA

=1

opi

Since Xy is a section of W, the condition which states that the constraint is perfect is
satisfied and the projection on @ of the curve ¢ — ¢(t) is a motion of the system. 0O
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2.17. Remarks.

1. Contrary to what happens for unconstrained, time independent systems, the Hamil-
tonian H may not be a first integral of Xp, i.e., may not remain constant during a motion
of the system. This property is due to the fact that even when the constraint is time in-
dependent, it may give energy to (or withdraw energy from) the system. However, when
the constraint submanifold C is tangent to the Liouville vector field of Q) (in particular,
when C' is a vector sub-bundle of T'Q)), one can prove that H is a first integral of Xp.

2. In [7], P. Dazord introduces a formalism for constrained mechanical systems different
from that used here. In his formalism, the geometric properties of the constraint are
described by a submersion f of the configuration manifold () onto another manifold S, and
amap Y : TQ — TS, fibered over f, eventually nonlinear on the fibers. A parametrized
curve t — z(t) in @ is said to be compatible with the constraint when it satisfies

@)= (52).

In other words, the subset C' of T'() of kinematical states compatible with the constraint is

C={veTQ|(Tf-Y)v)=0}.

Dazord does not assume that C' is a submanifold of T'(). He says that the constraint is
holonomic when Y = 0, almost holonomic when Y factors through fop:TQ — S, semi-
holonomic when Y factors through p : TQQ — (. In order to describe the mechanical
properties of the constraint, he introduces a vector sub-bundle F of p*(T'Q) (the vector
bundle over T'Q) inverse image of the tangent bundle TQ by the map p : TQ — Q). The
sub-bundle F' yields the space of infinitesimal virtual displacements for which the work of
the constraint force vanishes. Dazord says that the constraint is perfect when

F={(v,w) €ep*(TQ)=TQ&TQ | w € ker(Tf) }.

Observe that Y does not play any part in the definition of perfect constraints. For semi-
holonomic constraints (in Dazord’s language), and a fortiori for almost holonomic or
holonomic constraints, one can easily see that Dazord’s definition of perfect constraints
is equivalent to our Definition 2.8, and that Dazord’s formalism and ours lead to the same
equations. But for more general constraints, the two formalisms are not equivalent, even
in the definition of perfect constraints. Of course, the formalism developed here deals only
with passive constraints, while Dazord’s formalism (which extends some ideas introduced
in [18] and [19] for geometric constraints) can include some active constraints.
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3. Lie group actions on constrained systems, reduction and relative equilibria

In this section we consider the action of a Lie group on a constrained mechanical system.
We define relative equilibria (also called stationary motions) of the system. We introduce
a reduction procedure which will allow us to obtain a reduced constrained system, and
we use that reduced system for discussing the stability of relative equilibria. The reader
is referred to J. E. Marsden [20] for a thorough discussion of various kinds of reduction
and many applications, and to R. Montgomery, J. E. Marsden and T. Ratiu [26] for the
determination of the Poisson structure on the quotient of the cotangent bundle to a principal
G-bundle.

For the needs of the reduction procedure to be defined, we must first introduce a slight
generalization of the concept of constrained Hamiltonian system, in which the phase space
will be a general Poisson manifold, instead of a cotangent bundle equipped with its canonical
symplectic structure and the associated Poisson structure.

3.1. Definition. A constrained Hamiltonian system is a 5-tuple (M, A, H,D, W), in
which

(M, A) is a Poisson manifold (the phase space),
— H: M — R is a smooth function (the Hamiltonian),
— D is a submanifold of M (the Hamiltonian constraint submanifold),

W is a vector sub-bundle of Tp M (the projection bundle) such that TDNW = {0} and
that the Hamiltonian vector field Xg = A*(dH), restricted to the submanifold D, is a
section of TD @ W.

We set

XH‘D:XD+XW7

where Xp is a smooth vector field on D (called the constrained Hamiltonian vector field),
and Xy a smooth section of the projection bundle W (its opposite — Xy is called the
constraint force field). Integral curves of Xp are called motions of the system.

We observe that the property which states that TD N'W = {0} and that Xg ‘ pisa
section of TD & W, in Definition 3.1, is equivalent to the pairing condition of Dazord [7].

3.2. Definition. A symmetry of the constrained Hamiltonian system (M, A, H, D, W) is
a left action ® : Gx M — M of a Lie group G on the phase space M, which leaves invariant
the Poisson tensor A, the Hamiltonian H, the Hamiltonian constraint submanifold D, and
the projection bundle W.

3.3. Remarks. The symmetry @ is, in many examples, a Hamiltonian action, i.e., an
action such that the infinitesimal generator of the restriction of ® to every one-parameter
subgroup of G' is a Hamiltonian vector field. In such a case, there exists a momentum
map J : M — G*, where G* is the dual of the Lie algebra G of GG, such that, for any
X € @G, the infinitesimal generator of the restriction of ® to { exp(tX) ‘ t € R} is the
Hamiltonian vector field A¥((J, X)). For classical mechanical systems with constraints
discussed in Section 2, the phase space M is a cotangent bundle T*(), its Poisson structure
is the structure associated with its canonical symplectic structure {2 = da, and the action
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® is, in most cases, the canonical lift to T of an action of a Lie group G on the
configuration space (). Such an action leaves invariant the Liouville 1-form « of T*(Q),
and therefore is Hamiltonian, with an Ad*-equivariant momentum map. However, for
constrained Hamiltonian systems, the momentum map does not play a part as important
as for unconstrained systems, because in general it does not remain constant during a
motion of the system: Noether’s theorem does not apply. Moreover, a Hamiltonian action
of a connected Lie group on a Poisson manifold leaves invarant every symplectic leaf of that
manifold. The symmetries of constrained Hamiltonian systems obtained by reduction very
often do not leave invariant the symplectic leaves of the phase space, but instead they map
every symplectic leaf onto another symplectic leaf. For these reasons, in Definition 3.2, the
symmetry ® is a Poisson action which may not be Hamiltonian.

3.4. Definition. Let (M,A,H,D,W) be a constrained Hamiltonian system with a
symmetry ® : G x M — M. A relative equilibrium (also called stationary motion) of
the system is a motion ¢ : R — D of the system, i.e., an integral curve of the constrained
Hamiltonian vectoir field X p, which is also an orbit, under the action ®, of a one-parameter
subgroup of G.

3.5. Theorem. Let (M,A,H,D,W) be a constrained Hamiltonian system with a

symmetry ® : G x M — M. We assume that the set M of orbits of the action ® has a
smooth manifold structure such that the canonical projection w: M — M 1is a submersion.
Then:

1. 13 = 7T(D) isa submamfold ofM and the image by 7 of the bundle W 1S a vector sub-
bundle W ofTAM such that TDNW = {0}. Moreover, there exists on M a umque Poisson

structure &such that m is a Poisson map, and a unique smooth function H:M— R, such
that H=Ho.

2. (J/W\, K, ﬁ, 13, W) 15 a constrained Hamiltonian system, which will be called the reduced
constrained system associated with (M, A, H, D, W) and the symmetry ®.

3. For each motion c of the constrained Hamiltonian system (M,A\,H, D,W),c=moc
is a motion of the reduced system (M,A,H,D,W).

4. A motion c of (M,A,H,D,W) is a relative equilibrium if and only if ¢ = mwo c is
constant, i.e., is an equilibrium point of the reduced system.

Proof.

1. For any point a € D there exists a smooth section s : U — M of the submersion
7, defined on an open neighbourhood U of @in M. Then s is a diffeomorphism of U onto
the submanifold U = s(U) of M. Moreover, U intersects D transversally, because for each
point € UND, T, D contains ker(7T,7) which is complementary to ToU in T, M. Therefore
UND is a submanifold of U. Since D is ®-invariant, s maps UND onto UN D, which
proves that U N D is a submanifold of U. We conclude that D is a submanifold of M.

Let 7 be a point of D, and z be a point such that m(x) = Z. By using the invariance of
W, we see that T,7(W,) does not depend on the choice of x € m=1(x). Therefore we can set
Wg = T,n(W;). We have T, D N W, = {0} and ker(T,n) C T, D; therefore the restriction
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of Tym to W, is an isomorphism of W, onto wa\, which proves that W = UZEe ) Wg is a
vector sub-bundle of TBM\ . Moreover, T,m(T, D) = T;ﬁ, therefore Tgﬁ N Wg = {0}.

By assumption, ® leaves A invariant. Therefore the Poisson bracket of two ®-invariant
smooth functions on M is a ®-invariant function. This 1mphes [15, chapter III, proposition
9.4] that there exists a unique Poisson structure A on M such that r is a Poisson map.

Smooth functions on M are in one-to-one correspondence with ®-invariant smooth
functions on M. Since H is ®-invariant, there exists a unique smooth function H on
M such that H = H o .

2. Since 7 is a Poisson map, the Hamiltonian vector field Xz on the Poisson manifold
(M, A) projects onto the hamiltonian vector field Xz on the Poisson manifold (M A).

Therefore X o~ | 5 is a section of T' D@W, and (M , A, H , D, W) is a constrained Hamiltonian
sytem.

3. The two terms Xp and Xw of the restriction of Xz to D project onto X7 and X,
respectively. Therefore, for each motion ¢ of (M, A, H, D,W), ¢ = m o c is a motion of the

reduced system (M\, K, I;T, 13, W)

4. Let ¢ be a relative equilibrium of (M, A, H, D,W). Then by the very definition of a
relative equilibrium, 7 o ¢ is constant, i.e., is an equilibrium point of the reduced system.
Conversely, let ¢ : I — M be a motion of (M, A, H, D, W) such that 7 o ¢ is constant. Let
to € I, and zo = x(tp). For any ¢t € I, z(t) is an element of the orbit ®(G, zy), which may
be identified with an homogeneous space of G. Therefore there exists an element X € G
such that

d
Xp(xo) = gq)(exp(sX),xO) ‘s:() .

Using the ®-invariance of the constrained Hamiltonian vector field Xp, we see that the
parametrized curve ¢ — <I>(exp(t —to)X, a:o) is an integral curve of Xp which takes the
value xq for t = to. By unicity of maximal integral curves, that parametrized curve is equal
toe. [

4. The rolling stone

4.1. Configuration, kinematical states, phase space and Hamiltonian. Let us
consider a solid heavy body, bounded by a smooth, strictly convex surface, supported by a
fixed solid horizontal plane. We assume that during its motion, the body remains in contact
with the plane, that the friction at the contact point prevents the body from slipping, and
that the corresponding constraint is perfect.

We first define the configuration space of the system without constraint. Let E be the
physical space; it is an affine Euclidean three-dimensional space. Let G; be the group
of Euclidean displacements of F, i.e., the group of affine Euclidean orientation-preserving
mappings of F onto itself. As a reference configuration, we choose a particular position F
of the solid body in E. Then for any other position P of the body in E, there is a unique
g € G1 such that gFPy = P; conversely, for any g € G1, gP) is a position of the body in F.
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Therefore, the group GG1 can be considered as the configuration space of the system. The
space of kinematical states is the tangent bundle T'G;, and the phase space the cotangent
bundle T*G1.

In order to be able to consider E as a vector space, let us choose as origin an arbitrary
point O € E. Then the group G can be identified with the semi-direct product £ x SO(E),
the first factor being the subgroup of translations of £, and the second the stabilizer of O
in (31, i.e., the subgroup of rotations of E around its origin O. An element of G is a pair
(a,9), witha € E, g € SO(F), and the mapping of E onto itself which corresponds to that
element is

r—a-+gr.

The composition law of G is
(a1,91)(az, g2) = (a1 + g1a2, 9192) -

The Lie algebra G; of G is the semi-direct product F x so(F). The first factor F is the
Lie algebra of the subgroup of translations of E, and the second so(F) the Lie algebra of
the subgroup of rotations of E around its origin. The bracket in G; = E X so(E) is given
by

[(a1, X1), (a2, X2)] = (X1a2 — Xoa1, [ X1, Xa]),

where, in the right hand side, X; and X, € so(FE) are considered as linear endomorphisms
of E.

The kinetic energy of the system is
1
T(w)zEK(w,w), w e TGy,
where K is a left-invariant Riemannian metric on GG;. The potential energy is

U(aag) = m’Y(a’—i_gC | 63)5 (aag) € Gla

where ( | ) is the scalar product in E, C the position in E of the center of mass of the body
when it is in the reference position Py, eg the unit vertical vector pointing upwards, m the
total mass of the body and « the gravity acceleration. The Lagrangian of the system is

therefore .
L(w) = 3K (w,w) = U (p(w))

where p : TG; — (G is the canonical projection.

By left translation, the tangent bundle T'G; can be identified with G1 x G;. Since G1
and Gy are themselves identified with £ x SO(F) and E x so(E), respectively, the space
of kinematical states is £ x SO(E) x E x so(F). A kinematical state will therefore be
denoted by (a,g,v,X), with a € E, g € SO(E), v € E, X € so(E). We observe that v and
X can be easily identified, respectively, with the velocity of the point of the body which
is situated at the origin when the body is in its reference position, and with the angular
velocity of the motion of the body around that point, both expressed in a frame attached
to the body.
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Let us now choose the reference position Py of the solid body in such a way that when
it is in that position, its center of mass is at the origin O of E. Then by Konig’s theorem,
the kinetic energy splits into a sum

1 1
T(a,g,v,X) = im(v\v) + EI(X’X) .

The first term of that sum, (1/2)m(v|v), is the kinetic energy of the translation motion
of the center of mass of the body. The second, (1/2)I(X, X), is the kinetic energy of the
rotation of the body around its center of mass. The bilinear form I on the Lie algebra
so(F) is symmetric positive definite; it is called the inertia form of the body at its center
of mass.

The phase space T*G can be identified with the product E x SO(E) x E* x (so(E))*.
An element of that space will be denoted by (a, g,II, M), where a € E, g € SO(FE), Il € E*,
M € (so(E))". It can be seen easily that II is the linear momentum of the motion of the
center of mass of the body, and M the angular momentum of the motion of the body around
its center of mass, both expressed in a frame attached to the body.

The Legendre transformation £ : TGy, — T*G; is the map
(a,9,v,X)+— (a,g, I, M), withIl=pu(v), M =I1(X),
where y: E — E* and I : so(E) — (so(E))" are the isomorphisms defined by
(p(),w) =m(v|lw), vandwekFE, (I(X),Y)=I(X,Y), XandY €so(E).

The Hamiltonian H of the system can be written as

H(a,g,1I, M) = %(H, pHI)) + %(M, I7Y(M)) + y(p(a), es)

4.2. The constraint submanifold and the projection bundle. When the solid body
is in its reference position Py, let X be the surface which bounds that body, considered as a
2-dimensional submanifold of . We recall that the Gauss map, defined on ¥, with values
in the unit sphere S? of E, associates with each point of ¥ the unit vector normal to ¥ at
that point, oriented outwards. Since . is smooth and strictly convex, the Gauss map is a
diffeomorphism. We will denote by I' : S? — ¥ the inverse of the Gauss map.

We assume now that the origin O has been chosen in the horizontal solid plane F' on
which the moving body is rolling. The constraint submanifold C' is the set of kinematical
states (a,g,v,X) € E X SO(E) x E x so(F) which satisfy the following two conditions:

(ales) = (To g™ (—es) | 7" (—e3)) (9)

v+ XoTlog ' (—e3)=0. (10)

Equation (9) states that the lowest point of the body is in the horizontal plane F. Equation
(10) states that the velocity of a material point of the moving body vanishes when that
point comes into contact with the horizontal plane F' on which the body is rolling.
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It is easy to verify that the constraint is regular in the sense of Definition 2.5. The
submanifold denoted by @, in that Definition is the subset of elements (a, g) € E x SO(E)
which satisfy (9). We observe that @J; and the constraint submanifold C' can be identified
with F' x SO(FE) and F x SO(FE) x so(E), respectively, since (9) and (10) determine (a|es)
in terms of g, and v in terms of g and X. The variable which runs over the factor F'is the
orthogonal projection on F' of the center of mass of the moving body.

The Hamiltonian constraint submanifold D is the subset of elements (a,g,II, M) €
E x SO(E) x E* x (so(E))* which satisfy (9) and

H—{—IJ,O(I_IM)OFOg_l(—@g):O. (11)

It can be identified with F' x SO(E) x (so(E))".
For each g € SO(E), we will denote by ¢, : E* — (so(E))* the linear map defined by

(p YY) =(II',Y o g~ (—e3)), I' € E*, Y €so(E).

Then it is easy to see that the fiber of the projection bundle over a point (a, g,II, M) of D
is the set of vectors tangent at that point to E x SO(E) x E* X (so(E))*, whose projections
on the first two factors E and SO(F) vanish, and whose projections II' on E* and M’ on
(so(E))" satisfy

M' = II'.

4.3. The evolution equations for the constrained system. By using well known
formulas for the Liouville 1-form on T7*G; and its differential (which may be found for
example in [15]), we obtain the evolution equations of the constrained mechanical system:

¢ da

= — ou” MI
dt g/J’ 9
dg -1
— =gl M
< dt g b)
dil _tor—1 -1 !
—r = (M) —ypg™(es) + 1T,
dM .
. W - _adI—lMM'i‘QOgHI.

In the third equation above, !(I='M) is the linear endomorphism of E* transpose of
I7'M € so(FE), considered as a linear endomorphism of E. We recall our sign convention
about the coadjoint action, used in the fourth equation above:

(ad%x M,Y) = (M,—adxY) = (M,[Y,X]), Me (so(E))", XandY €so(E).

The element II' € (SO(E))* must be chosen in such a way that for every ¢t € R,
(a(t), g(¢),11(¢), M (¢)) remains in the Hamiltonian constraint submanifold D defined by
Equations (9) and (11). We shall say (maybe a little improperly) that II' is the constraint
force, since it determines that force.
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4.4. The reduced constrained mechanical system. The symmetry group G of
the system is the subgroup of G; = E x SO(FE) generated by translations parallel to the
horizontal plane F' and by rotations around the vertical axis through the origin O. Elements
of G are pairs (b,h) € E x SO(E) such that

(ble) =0, hes = es.
The symmetry group G acts on G; by multiplication on the left,
(6, 1), (a,9)) = (b+ ha, hy).

It acts on the phase space T*G by the canonical lift of that action to the cotangent bundle.
If we identify T*G with E x SO(E) x E* x (so(E))* by left translations, that canonical
lift is given by

((b, h), (a, g, 11, M)) — (b+ ha, hg, 11, M) .
The set M of orbits of that action can be identified with R x S2 x E* x (SO(E))*, and the
canonical projection of M = E x SO(E) x E* x (so(E))* onto M is

(a,g,1I, M) — (z = (ale3),n = g~ (—e3), I, M) i

The Poisson structure on M for which the canonical projection is a Poisson map is easily
derived from the formulas for the symplectic 2-form on T*G;. The Poisson bracket of two
smooth functions F; and F at a point (z,n,II, M) of M is

OF: OF
(P, Fa} = (dnFifes) 52 = (dnFalea) 51

+ (dnFy1, (dpFo)n) — (dp Fa, (dp F1)n)
+ (1L, (dp Fy) (duFz) — (daFo) (diFh))
+ (M, [dp Fr, duFs)) .
In this formula, d,F; € T*S?, duF; € E, dyF; € so(E) are the partial differentials of
F; (i = 1 or 2), at point (z,n,II, M), with respect to the variables n € S2, Il € E*,
M € (so(E))*, respectively.
The reduced Hamiltonian is

~ 1 1
H(z,n,1I,M) = 5(H, p M) 4 5(M, I7'M) +myz.

The reduced Hamiltonian constraint submanifold D is the subset of elements (z,n,II, M)
in M which satisfy

z=(T(n) | n), (12)
O+ po(I"'M)oT(n) =0. (13)
For each b € E, we will denote by v, : E* — (SO(E))* the linear map defined by

(WIl,Y) = (I, Yb), II'cE*, Y cso(E). (14)
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Then the fiber of the reduced projection bundle W over a point (z,n,II, M) of D, is the

set of vectors tangent to M at that point whose projections on the first two factors R and
52 vanish, and whose projections I’ on the third factor E*, and M’ on the fourth factor
(so(E))", satisty

M' = tppIT'.

The evolution equations for the reduced constrained Hamiltonian system are

( dz _
E = —(N 1H|’I’L),
dn _ —(I"*M)n,
dt
{4 (15)
— = (M) 4 ypun + 11
dM . .
L W = —adI_lMM+¢p(n)H .

The constraint force II' must be chosen in such a way that for all ¢ € R, (2(t), n(¢), 11(¢),

M (t)) lies in the reduced constraint submanifold D, defined by Equations (11) and (12).
We observe that the first Equation (15), which expresses dz/dt, is in fact a consequence

of the other three Equations (15) and of Equations (12) and (13), which define D. Therefore

the really useful equations which govern the time evolution of the reduced system are (12),
(13), and the last three Equations (15).

We observe also that the reduced Hamiltonian H is a first integral of the evolution
equations.

4.5. Elimination of the constraint force. Let us introduce
P =M — t¢pull. (16)

This new variable, defined on the reduced Hamiltonian constraint submanifold, has a clear
mechanical meaning: it is the angular momentum of the solid body at its contact point
with the horizontal plane on which it is rolling, expressed in a frame attached to the body.

By using Equations (13) and (15), we obtain

dP . _
= adj-1ps P — y¥r() o p(n) — anF((I—lM)n) opo(I"*M)oTI'(n). (17)

We have denoted by T,,T" : T,,S? — Tr(nE = E the tangent map to the inverse I' of the
Gauss map at n € S2. We have used the identity, which follows easily from the definition
(14) of 9,

Yy (FITTM)T) = — adf-1 a7 Yoy = Y1 myorm) 11,
and the fact, which follows from Equation (13) and the skew-symmetry of elements of
so(F), that

-1 anyorm) I = Yr-1ayor@m) (—r o (I7'M) o T(n)) = 0.
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Now we use the fact that the Euclidean vector space F is of dimension 3. We know that
once a particular orientation of F is chosen, we can define on that space a composition law,
called the vector product and denoted by (z,y) — = x y. We recall that for any positively
oriented orthonormal basis (e, €9, e3) of E, we have

e; Xey=e3, €9 Xeg=e€e, €3z3Xe =eq,

and that F, when equipped with that composition law, is a Lie algebra. We recall the well
known formulae which relate the vector scalar products on E:

(% ylz) = (zly x 2),

r,yand z € F.
z X (y x z) = (z[2)y — (z]y)z,

We know also that the map ¢ : so(E) — FE, defined by

Clr)y=2zxy, rzand y € F,

is a Lie algebra homomorphism.

Using the above formulae and Equation (14), we obtain for any b € E a new formula for
the linear map 9y : E* — (so(E))*:

Qpb = adqu OtC.
Then, for any Y € so(FE), we deduce from Equations (13) and (16):

(PY) = <ad< 10(n) © Co,uo(I_lM)oI‘(n),Y>
q 1M)><Fn)\r x ¢(Y))

Y)+
) —
)m( x (C(I"*M) x T'(n) ‘C(Y)
)+ (I'(n)
(n)

3

F(n)< CopoC(I™*M) Y>
¢(I 1M)< CopuoTl(n Y>

Therefore we have
P=J(n)(I"'M)— (T(n) | C(I""M))*CopoT(n),
where J(n) : so(E) — (so(E))” is the linear map
J(n) =1+ (D(n)|T(n))*Copol. (18)
For any Y and Z € so(E), we have
(J(n)Y, Z) = (IY, Z) + m(L'(n) | T(n))(CY]C2Z)

which proves that J(n) is symmetric positive definite (with respect to the scalar product
on so(FE) for which ( is an isometry). Therefore, J(n) is invertible, and we have

Jn) "N P)=I"M— (T(n) | CI'M))J(n) "o 'Copol(n). (19)
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By applying ¢ and taking the scalar product with I'(n), we obtain
n) | CoJ(m)7H(P)) = (T(n) | CI*M)) (1= (T(n) [ CoT(n) 0 *CopoT(n))).

Using the isomorphism ¢ and the Euclidean structure of E, we can identify F, so(F)
and their duals. Let z; be the components of I'(n) in an orthonormal basis of £ in which
is diagonal, with diagonal components I;, i = 1, 2, 3. In that basis, J(n) is also diagonal,
with diagonal components

Ji = I; + m(x1? + 0% + 232) 1=1,2, 3.

The components of (o J(n)~to tCopuol'(n) are:

mx; _ mx;
Ji L +m(z? + 292 + 232)

and we have

— o “lottopo =1- xiz
1 (F(”)‘C J(n) Cop F(")) 1 m;Ii+m($12+$22+x32)

B m(x1? + 192 + 132)
iIlf(Il, IQ, I3) + m(x12 + .’L’22 + ﬂ732)
>0,

since inf(Iq, I, I3) > 0. We may therefore write

iy (C(n) [ ¢oJ(n)~H(P))
n)‘C(I M)) ( n)|COJ IOtCO/LOF(n))’
and, using (19),

(C(n) | Co T()2(P))
1= (T(n) [ CoJ(n) "o i o proT(n))

I7'M = J(n) ' (P) — Jn)"totCopuol(n).

The above equation yields I='M in terms of P and n only. Let us replace I-'M by
that expression in the second Equation (15) and in Equation (17). We obtain a differential
equation for (n,P) € S? x (so(E))*, which is the evolution equation for the reduced
constrained mechanical system.
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5. Two simple examples

5.1. First example: description of the system. The configuration space of the
system is the cylinder @ = R x S'. We denote by (x,0) and (z,6,,0) the usual local
coordinates on @ and T'Q, respectively. Observe that § € S' = R/27Z is an angle rather
than a real.

We choose for the constraint submanifold
C = {(:U,H,:i:,é) eTqQ ‘ i+mé:0}.

It is a rank 1, therefore integrable sub-bundle of T'Q (the constraint is holonomic), and the
leaves of the foliation of () defined by C are the images of immersions of R into () of the
form

6 — (ce~%, 0 modulo 27),

where c is a constant. The leaf ¢ = 0 is a circle S*, and all the other leaves are (for their
own manifold structure) diffeomorphic to R.

For the Lagrangian, we choose
. 1 .
L(z,0,4,0) = 5(932 +62%).

The mechanical system (@, L,C) has a very simple mechanical interpretation: it de-
scribes the motion of a material point of unit mass, constrained on a cylinder on which
a system of grooves imposes the relation  + 26 = 0 between the two components of the
velocity. Alternatively, the system can also be physically realized by a skate moving on a
cylinder, with a mechanism which imposes the angle made by the blade of the skate with
the axis of the cylinder, as a function of the coordinate x of the skate along that axis.

We denote by (x,0,ps,pg) the coordinates on the phase space T*@Q). The Legendre
transformation is _ _
(ZL‘,Q,.’%, 0) = (.’L’,g,pw = i‘ape = 0) )

and the Hamiltonian of the system is

1

The Hamiltonian constraint submanifold is

D = { ('Tagapw7p9) € T*Q | Pz +2pg =0 } )
and the projection bundle W is generated by the vector field along D

0 +a:i
Opa Opg -

The Hamiltonian vector field Xz and the constrained Hamiltonian vector field Xp are,
respectively,

0 0 0 0 0 0
Xo=p. L ol xp=p L Y 9 . .9
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where A must be chosen so that Xp be tangent to D. We obtain

A — _ p$p9 .
14 z2
The equations of motion are therefore
d_:l? _ dp:l: — _ DzDo
ar ~ Peo dt 1+22° (20)
g _ ’ dps _  TPaPs
a7 dt 1+a22°
We must also add to the system the constraint equation
Pz +2ps =0, (21)

and choose Cauchy data which satisfy that equation. The corresponding solution of (20)
will then satisfy (21) fort all ¢.

5.2. First example: the S! action and the reduced system. We consider the
action @ : ST x Q — Q,
(o, (z,0)) — (z,a+6).

Its canonical lifts to T'QQ and T*(Q are, respectively,
(a, (z,0, &, 0)) — (z,a+ 0, &, 0)

and
(Oé, (.’E, eapwape)) = (ZC, o+ aapwape) .

The constraint submanifold C' and the hamiltonian constraint submanifold D are invariant
under these actions, as well as the foliation of () defined by C. However, the leaves of that
foliation are individually not invariant in general.

The quotient Poisson manifold M = T*Q /81 is diffeomorphic to R3 (coordinates z, p,
pg), with the Poisson tensor

0 0

A= — .
8pw/\8x

The expression of the reduced Hamiltonian H coincides with that of H, since H does not
depend on . The reduced hamiltonian constraint submanifold D is

~

D = { (x,ps,p9) € M | py +1pg=0}.

It can be identified with R?, with z and pg as coordinates. The reduced projection bundle
W is generated by the vector field along D

o0
apa: apG .
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With z and pg as coordinates on 13, the reduced equations of motion are

dx
E_pwa
dpg  *p}
At 1422

Since H is a first integral, each integral curve satisfies
(1 + z%)p3 = constant.

All the points of the first coordinate axis (z,py = 0), including the origin (z = 0,pg = 0)
are equilibria of the reduced system, which correspond to true equilibria of the nonreduced
system. All the points of the second axix (z = 0,pg # 0), except the origin, are equilibria
of the reduced system which correspond to relative equilibria (stationary motions) of the
nonreduced system. It is easy to see that in 13, the half axis { (x =0, pg > 0) } is attractive
(its attractive basin is the half plane py > 0), and that the other half axis { (z = 0, pg < 0) }
is repulsive.

5.3. Another example. We indicate here a simple example of constrained Hamiltonian
system in the sense of Definition 3.1, with a stable and attractive equilibrium. We do not
use here the reduction procedure: our example should be considered as an already reduced
system. The reader is referred to A. Weinstein [41] for a general discussion of stability of
equilibria in Poisson Hamiltonian systems.
*
bl

The phase space is R? (coordinates z, y, z), with the Lie-Poisson structure of (so(3))

A=z dpn D 00 ,,0,9
- Tox " Oy oy 0z Yo:" 0z

The Hamiltonian of the system is the linear form
H(z,y,z)=azx+ Py +~vz, «, fandy € R, constants.

The Hamiltonian constraint submanifold D is the plane z = 0. The projection bundle W
is generated by the vector field along D

9 +a a € R constant
0z oz’ )
For the constrained Hamiltonian vector field Xp we obtain

0 0
Xp = (—aBz + (y+ ao:)y)a—aj — 'ya:a—y.

It is easy to see that if the constants a, a and « satisfy
v(ac +v) >0,

the origin is a stable and attractive equilibrium of Xp.
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