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Abstract

We introduce the notion of a Jacobi bundle, which generalizes that of a Jacobi man-
ifold. The construction of a Jacobi bundle over a conformal Jacobi manifold has, as
particular cases, the constructions made by A. Weinstein [21] of a Le Brun-Poisson mani-
fold over a contact manifold, and that of a Heisenberg-Poisson manifold over a symplectic
(or Poisson) manifold. We show that the total space of a Jacobi bundle has a natural
homogeneous Poisson structure, and that with each section of that bundle is associated
a Hamiltonian vector field, defined on the total space of the bundle, tangent to the zero
section, which projects onto the base manifold.

1. Introduction

The construction which associates a vector field (which is said to be Hamiltonian)
with every smooth function on a symplectic manifold, is of central importance in symplectic
geometry, and has many applications in mechanics and mathematical physics. It is now well
known that such a construction exists also for manifolds with various structures, which need
not be symplectic: odd-dimensional manifolds equipped with a contact 1-form, Poisson
manifolds, Jacobi manifolds. Symplectic and Poisson manifolds are particular classes of
Jacobi manifolds, but other important classes of manifolds, such as contact manifolds with
no specified, globally defined contact form, are not. In section 3, we introduce the notion
of a Jacobi bundle, which encompasses contact structures, as well as locally conformally
symplectic structures. The notion of a Jacobi bundle is essentially equivalent to that of a
conformal Jacobi structure on a manifold: the base space of a Jacobi bundle is a conformal
Jacobi manifold, and conversely, under some mild assumptions, one can canonically build
a Jacobi bundle over a given conformal Jacobi manifold [2, section 1.4]. We shall see (4.5)
that in the particular cases when the given conformal Jacobi manifold is a contact manifold
or a symplectic manifold, we obtain the constructions, made by A. Weinstein [21], of a Le
Brun-Poisson manifold and of a Heisenberg-Poisson manifold, respectively. We shall prove
(4.6) that on a Jacobi bundle, a Hamiltonian vector field is associated with every smooth
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section. This vector field is defined on the whole total space of the bundle, although, for
its construction, we use a function defined on the open dense subset complementary to the
zero section. It is tangent to the zero section, and projects onto the base space. Up to
our knowledge, these properties do not seem to have been observed before. Finally (4.8),
we compare some properties of Jacobi bundles with those of Lie algebroids, in the sense of
Pradines [13].

2. Definitions and elementary properties

2.1. Definition. A Jacobi structure on a manifold M is defined by choosing a bilinear
map from C*°(M,R) x C*°(M,R) into C*°(M, R), called the Jacobi bracket, and denoted
by

(f,9) = {f.9},

which satisfies the following properties:

(i) it is skew-symmetric,

(ii) it satisfies the Jacobi identity,

{f.{g,n}} +{g,{h, f}} + {h. {f,9}} = 0;

(iii) it is local, i.e., the support of {f, g} is contained in the intersection of the supports of
f and of g.

A manifold with such a structure is called a Jacobi manifold.

2.2. Comments and properties. Jacobi manifolds were introduced independently
by Kirillov [6] and Lichnerowicz [11], who used different, but equivalent, definitions.
Definition 2.1 of Jacobi manifolds is that introduced by Kirillov, who called them
“local Lie algebras”. Kirillov proved that on a Jacobi manifold M, the Jacobi bracket is
expressed by a bidifferential operator of order at most one in each of its arguments. With
the skew-symmetry property, this shows that there exist on M a vector field £ and a
skew-symmetric, contravariant 2-tensor A, both uniquely defined, such that for all f and
g € C*°(M,R),
{f,9} = A(df,dg) + (f dg — g df , E) . (1)

Of course, A and F must satisfy some properties (indicated below) so that the Jacobi
bracket satisfy the Jacobi identity.

A. Lichnerowicz [11] considered a manifold M equipped with a vector field E and a
contravariant skew-symmetric 2-tensor A. He defined the Jacobi bracket of two functions
f and g € C*°(M,R) by formula (1) above, and proved that the Jacobi bracket satisfies
the Jacobi identity if and only if A and E satisfy the following two identities:

[E,A]=L(E)A=0, [AA]=2EAA. 2)
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The bracket which appears in the above expressions is the Schouten bracket [15] [8].
Lichnerowicz defined a Jacobi manifold as a manifold M, equipped with a vector field F
and a contravariant, skew-symmetric 2-tensor A, which satisfy identities (2). Clearly, this
definition is equivalent to 2.1.

In what follows, such a Jacobi manifold will be denoted by (M, A, E).

2.3. Examples.

1. Let E be a smooth vector field on a manifold M. We set, for all f and g €
C>(M,R),
{f,9t=(fdg—gdf . E).

One may easily verify that this bracket satisfies the Jacobi identity, and therefore defines
a Jacobi structure on M.

2. Let (M, ) be a symplectic manifold. The bundle map
Q:TM - T*M, QX)=-i(X)Q, (3)

is an isomorphism, since  is nondegenerate. Let A = (Q")~1 : T*M — T M be its inverse.
The well known Poisson bracket of two functions f and g € C*° (M, R) is defined by

{f.9} = Q(A*(df), A (dg)) = (dg, A*(df)) = —(df , A¥(dg)).
As it satisfies the Jacobi identity, we see that symplectic manifolds are a special class of
Jacobi manifolds.

3. A Jacobi manifold (M, A, E) in which the vector field E vanishes identically is called
a Poisson manifold [10] [20], and denoted by (M, A). A Jacobi manifold M is a Poisson
manifold if and only if the Poisson bracket is a derivation (for the ordinary product of
functions) in each of its arguments, i.e., if and only if, for all f, f1, fa, g, g1, 92 € C° (M, R),

{fife, 9} = filfe, 9} +{f1,9} fo5 {fr 9192} = {f,91}92 + g1{f, 92} -

In particular, a symplectic manifold (M, 2) (example 2) is a Poisson manifold: its
2-tensor A is such that the associated bundle map Af : T*M — TM, defined by (n, A¥¢) =
A(&,7), is the inverse of the bundle map Q° : TM — T*M defined by equation (3).

4. A locally conformally symplectic structure [4] [9] on an even-dimensional manifold
M is defined by a pair (2, w), where Q is a 2-form and w a 1-form, such that €2 is everywhere
of rank 2n = dim M, which satisfy
dw =0, dQ+wAQ=0.
Let E be the unique vector field and A be the unique 2-tensor such that
I(E)Q = —w, i(A*8) = —B for every BeT*M.
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Then (M, A, F) is a Jacobi manifold: this can be easily verified by observing that on a
neighborhood of each point, there exists a function f such that w = df, and that the locally
defined 2-form exp(f)Q is symplectic. See also example 6 below.

5. Let M be a (2n + 1)-dimensional manifold equipped with a contact 1-form w, i.e.,
a Pfaffian form such that w A (dw)™ nowhere vanishes. Let E be the Reeb vector field [14],
i.e., the unique vector field on M such that

Let A* : T*M — TM be the vector bundle map such that, for each ¢ € T*M,
i(A*)w=0 and i(A*¢)dw= —(¢ - (£, E)w).
We define the 2-tensor A by

where £ and 7 are two elements in 7*M which belong to the same fiber. Then A and E
define a Jacobi structure on M, determined by the contact form w.

6. Let (M,A,E) be a Jacobi manifold, and a € C*°(M,R) be a function which
vanishes nowhere on M. For each pair (f, g) of functions in C*° (M, R), we may set

(/9% = ;1o ag}.

It can be seen easily that this new bracket is skew-symmetric, local, and satisfies the
Jacobi identity. Therefore it defines another Jacobi structure on M, which is said to be
a-conformal to the initially given one. The vector field E, and the 2-tensor A, which come
with this new structure are given by

Ay =aA; E, = aF + A*(da) = ®(a).

The map ®, which associates with any function f a vector field ®(f), will be formally
defined in 2.6.

When the initially given Jacobi structure on M comes from a symplectic 2-form €2
(example 2), the a-conformal Jacobi structure is such that

AL = (@)Y E, = ()" (da) = A*(da).

It is associated with the locally conformally symplectic structure (example 4) defined on M
by the pair
1 d
Qo =-Q, we=—2.
a a

Since w, is exact, such a structure on M is said to be conformally symplectic.
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When the initially given Jacobi structure on M comes from a contact 1-form w (ex-
ample 5 ), the a-conformal Jacobi structure comes from the contact 1-form

Weg = —W.
a

2.4. Definition.  Let (My, A, E;) and (Ma, Ag, FE3) be two Jacobi manifolds, and
@ : M; — M5 be a smooth map.

1. The map ¢ is said to be a Jacobi map if, for every pair (f, g) of functions on My,
{fop,gophi ={f.g}200.

2. The map ¢ is said to be a conformal Jacobi map if there exists a nowhere vanishing
function a on M;j, such that ¢ is a Jacobi map when M; is equipped with the Jacobi
structure a-conformal to the initially given one, i.e., if, for every pair (f, g) of functions
on Mg,

{afop,ago o} =a({f g}200).

A map ¢ : M7 — M, is a Jacobi map if and only if the pairs (A1, As) and (E7, Es)
are compatible with ¢.

2.5. Example. (I am indebted to A. Weinstein for pointing out this example, although
it appears under a hidden form in [2].) Let (M, Q) be a prequantizable symplectic manifold
[16], [7], i.e., a manifold with a symplectic 2-form whose cohomology class is integer. Let
(Q,w, 7, M) be a prequantization of (M, ), i.e., m : Q — M is a T-principal bundle with
a connection form w whose curvature is {2. The connection form w may be considered as
a contact 1-form on Q). Then (Q,w) and (M, 2) are both particular Jacobi manifolds, and
m:@Q — M is a Jacobi map.

On Jacobi manifolds, just like on symplectic manifolds, we can associate a vector field
(which is said to be Hamiltonian) with every smooth function.

2.6. Definition. Let (M, A, E) be a Jacobi manifold. We denote by A* : T*M — TM
the vector bundle map associated with A, ¢.e., such that, for any x € M, £ and n € T M,

A& m) = (n, AY€)) = —(&, AH(n)).

1. For any smooth function f € C*°(M,R), the vector field
o(f) = A'(df) + fE

is called the Hamiltonian vector field associated with f, and the function f is called a
Hamiltonian for the vector field ®(f).



2. The characteristic distribution of (M, A, E) is the subset C' of TM generated by
the values of all the Hamiltonian vector fields.

2.7. Remarks.

1. The constant function equal to unity is a Hamiltonian for the vector field E = ®(1).

2. By using 2.6.1, we see that the fiber C, = CNT, M of the characteristic distribution
C over a point z € M is the vector subspace of T, M generated by the vector E(z) and
the image of the linear map AL : T M — T, M.

3. The Jacobi manifold (M, A, E) is said to be transitive if its characteristic distri-
bution is the whole of its tangent bundle TM. Lichnerowicz [11, 4] and Kirillov [6] have
shown that transitive Jacobi manifolds are, according to the parity of their dimension, ei-
ther locally conformally symplectic manifolds (example 2.3.5), or manifolds equipped with
a contact 1-form (example 2.3.6).

2.8. Proposition. Let (M,A, E) be a Jacobi manifold, and ® be the map which
associates with every function the corresponding Hamiltonian vector field.

1. The map ® is a Lie algebra homomorphism, i.e.,

o({f.9}) = [2(f),®(9)], fandgeCP(M,R).

2. For any f € C*®°(M,R), the first order differential operator ®(f) — E.f is a
derivation of the Jacobi Lie algebra C*°(M,R) (equipped with the Jacobi bracket).In other
words, for any f and g € C*°(M,R),

o(f){g, h} = (B.f){g, h} = {@(f)-9 — (E-f)g, h} + {g,®(f)-h = (E.f)h}.

2.9. Theorem (Kirillov [6]). The characteristic distribution of a Jacobi manifold
(M, A, E) is completely integrable in the sense of Stefan [17] and Sussmann [19], thus
defines on M a Stefan foliation (i.e., a foliation whose leaves may not be all of the same
dimension), called the characteristic foliation. FEach leaf of this foliation has a unique
transitive Jacobi structure such that its canonical injection into M is a Jacobi map (2.4).

2.10. Remark. The last theorem, together with remark 2.7.3, shows that each leaf of
the characteristic foliation of a Jacobi manifold is

— a locally conformally symplectic manifolds if its dimension is even,
— a manifold equipped with a contact 1-form if its dimension is odd.

For Poisson manifolds, the leaves of the characteristic foliation, all of even dimension,
are symplectic manifolds.



3. Jacobi bundles

The following observations show that the notion of a Jacobi manifold may not be quite
satisfactory for all practical purposes, and may need to be slightly generalized.

A contact structure on a (2n + 1)-dimensional manifold M is defined by a vector sub-
bundle P* of rank 1 of its cotangent bundle T*M such that any local, nowhere vanishing
section w of P* is a contact 1-form (i.e., w A (dw)™ # 0 everywhere). In several important
examples, such as the manifold of contact elements on R™t!, the contact structure of M
cannot be defined by a single contact 1-form defined on the whole of M: one has to choose
an open covering (U;) , i € I, of M, such that on each U; there exists a nowhere vanishing
section w; of P*. Of course,

wj = fjiwi on U; N Uj ,

where f;; is a real valued, nowhere vanishing function on U; NU;. Clearly, Jacobi manifolds
are not generalizations of contact manifolds: as shown by example 2.3.5, they are only
generalizations of manifolds equipped with a specified, globally defined contact 1-form.

On a Jacobi manifold (M, A, E), the flow of a Hamiltonian vector field ®(f), with
f € C®(M,R), is not in general a one-parameter local group of Jacobi automorphisms:
it is only a one-parameter local group of conformal Jacobi automorphisms. This follows
from the fact that ®(f) — E.f, and not ®(f) itself, is a derivation of the Jacobi Lie algebra
C>°(M,R) (proposition 2.8). Therefore, when looking at Hamiltonian vector fields, we are
led to use not only the Jacobi structure initially defined by A and E on M, but also all
the Jacobi structures which are conformal to that structure, in the sense of example 2.3.6.

The appropriate generalization of the notion of a Jacobi manifold, already introduced
by Kirillov [6], is the following.

3.1. Definition. Let (P, 7, M) be a line bundle over a manifold M, i.e., a vector bundle
whose fibers 77 !(z), x € M, are one-dimensional. Let I'>(7) be the vector space of global
smooth sections of m. A Jacobi bundle structure on (P, 7, M) is defined by choosing a
bilinear map from I'*°(7) x I'*°(x) into I'*°(), called the Jacobi bracket, denoted by

(Sla 52) = {31’ 52} )

which satisfies the following properties:
(i) it is skew-symmetric,
{s2,s1} = —{s1, 82} ;

(ii) it satisfies the Jacobi identity,

{81, {82, 83}} + {82, {83,81}} + {83, {81,82}} = 0;

(iii) it is local, i.e., the support of {s1, s2} is contained in the intersection of the supports
of s; and ss.

When equipped with such a structure, (P, m, M) is called a Jacobi bundle.
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3.2. Definition. Let (P, 7, M;) and (P, w9, M2) be two Jacobi bundles, and ¢ : P, —
P» be a vector bundle map, i.e., a smooth map whose restriction to each fiber of P; is a
linear isomorphism of that fiber onto a fiber of P,. Let ¢ : M; — M be the corresponding
base map, i.e., the unique smooth map such that 73 0 ¢ = @ o ;. Then ¢ is said to be a
Jacobi bundle map if, for every pair (s2, s5) of sections of 7o,

{325 512} op=¢o {Sla 5,1} )
where s; and s} are the sections of 71 such that so0p =po sy, shop =pos].

3.3. Remarks.

1. Let (M, A, E) be a Jacobi manifold, P = R x M, and 7 : P — M be the second
projection. Every function f € C*°(M,R) may be identified with a section z — ( f(x), a:)
of w. Clearly, (P, 7, M) is a (trivial) Jacobi bundle.

Let (M;,As, E;) (i = 1 or 2) be two Jacobi manifolds, (P; = R x M;, m;, M;) be the
corresponding trivial Jacobi bundles defined as above. Let ¢ : My — M be a Jacobi map.
Then the map ¢ : P — P> defined by

p(z,7) = (2,9(=))

is a Jacobi bundle map.

2. Conversely, let (P, 7, M) be a Jacobi bundle, and U an open subset of M on which
there exists a nowhere vanishing section so : U — P of 7. Every function f € C*°(U,R)
may be associated with the section fsg of m. For every pair (f,g) of functions on U, let
{f, g} be the unique function on U such that

{fSOa gSO} = {f7 9}30 -

Clearly this defines a Jacobi structure on U.
Let sy : U — P be another nowhere vanishing section of 7 defined on U, and let
a : U — R be the unique, nowhere vanishing function on U such that for each z € U,

so(r) = a(z)s(x) .

Then the Jacobi structure on U defined by choosing s, as reference-section, instead of s,
is a-conformal to the one defined by choosing sg as a reference-section.

Let ¢ be a Jacobi bundle map from a Jacobi bundle (P, m, M7) into another Jacobi
bundle (P, my, Ms). Let ¢ : My — Ms be the associated base map. Let U; be an open
subset of M; on which there exists a nowhere vanishing section s;o : U; — P; of m; (i =1
or 2), such that @(U;) C Us. We equip each U; (i = 1 or 2) with the Jacobi structure
associated with s;o, as indicated above. Let a : U; — R be the unique, nowhere vanishing
function on U; such that for each x € Uy

$20 0 @(z) = a(z)p o s10(z) = ¢ o (as1o0) (z) -

8



Then @ is an a-conformal Jacobi map from U; into Us.

3. The notion of a Jacobi bundle is essentially equivalent to that of a conformal Jacobi
structure, introduced for example in [2].

3.4. Examples.

1. Let M be a (2n + 1)-dimensional manifold, equipped with a contact structure
defined by a vector sub-bundle P* of rank 1 of T*M. Let (P*)? be the annihilator of P*,
P =TM/(P*)° be the dual bundle of P*, and 7 : P — M be the canonical projection.
There exists on P a natural Jacobi bundle structure, defined as follows. Let s; and sy be
two (global) sections of m. Let U be an open subset of M on which there exists a nowhere
vanishing section wg : U — P* of P*, and let sq : U — P be the dual section of P, i.e.,
the nowhere vanishing section such that, for each z € U, (wo(), so(x)) = 1. There exist
two functions f; and fy on U, both uniquely defined, such that

s1 = fiso0, s3 = fasp .

We define {s1, s2} on U by setting

{317 32}‘(] = {fl;f2}w0307

where {f1, fa}w, is the Jacobi bracket of the two functions f; and fo, for the Jacobi
structure on U associated with the contact 1-form wy.

The bracket {51,32}‘[] does not depend on the choice of wy: if we replace wgy by
wh = a~'wp, where a is a nowhere vanishing function on U, sg, f; and fo are replaced by
sy = asg, fi =a"1f1 and fi = a~'f,, respectively. But as seen in example 2.3.6,

{fiafé}wo = %{afLafé}wo = %{f17f2}w07
thus
{f{a fé}w(’)slo = a’{f{mfé}wéso = {fla fZ}wOSO .

Therefore, by using this construction for each open subset of an open covering (U;), i € I,
of M, such that on each U; there exists a nowhere vanishing section of P*, we obtain a
globally defined Jacobi bundle structure on (P, w, M).

2. Let M be a 2n-dimensional manifold, and let P* be a vector sub-bundle of rank 1
of A>T*M (the bundle of exterior 2-forms on M), such that any nowhere vanishing local
section €2 : U — P* of that bundle is everywhere of rank 2n and such that there exists, on
the open subset U of M, a 1-form w which satisfy

d2+wAQ=0; dw=20.

We observe that if €2 : U — P* satisfies these conditions, then for any nowhere vanishing
function a on U, the section af2 satisfies the same conditions, since

d(aQ) + (w —a"*da) A (aQ) =0, d(w—a"da) =0.
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We observe also that if n > 1, the 1-form w is completely determined once €2 is chosen.
For n = 1, we will impose w = 0, and the conditions which must be satisfied by P* are
trivially satisfied.

The structure so defined is obviously a slight generalization of that of a locally con-
formally symplectic structure (example 2.3.4).

Let P be the dual bundle of P*, and 7 : P — M be the canonical projection. Then
(P, 7, M) has a natural Jacobi bundle structure, which may be defined in a way similar to
that in the previous example: we take two sections s; and ss of m; for any local nowhere
vanishing section €2 : U — P*, we take the dual section o : U — P such that (Q,0) = 1;
we take the functions f; and fo such that s; = fio and sy = fo0; then we define {s1, s2}
on U as being the section { fi, fo}o, where {f1, f} is the Jacobi bracket relative to the
locally conformally symplectic structure defined on U by €.

Such a structure will be called a locally conformally symplectic bundle structure over
M. Clearly, a locally conformally symplectic structure on M is a trivial locally conformally
symplectic bundle structure over M, with a specified nowhere vanishing section of that
trivial bundle.

3.5. Remarks.

1. There are well known examples of contact manifolds with no globally defined
contact 1-form corresponding to their contact structure. In a similar way, there exist
locally conformally symplectic bundle structures which are not trivial: for example, the
dual bundle of the area-element bundle on a non-orientable 2-dimensional manifold.

2. Let M be a (2n + 1)-dimensional manifold with a contact structure defined by
the rank 1 sub-bundle P* of T*M. Stong [18] has shown that if n is even, then M is
orientable, and that if n is odd, then M is orientable if and only if the bundle P* is trivial.
Similarly, let (P, 7, M) be a locally conformally symplectic bundle over a (2n)-dimensional
manifold M. One can prove (F. Guédira and A. Lichnerowicz [4]) that if n is even, then
M is orientable, and that if n is odd, then M is orientable if and only if the bundle P is
trivial.

3. Let us give an example of an orientable 2n-dimensional manifold, wit n = 2p even,
over which there exists a nontrivial locally conformally symplectic bundle structure. We
define on R* an equivalence relation, by saying that (z1, 72, 73, 74) and (2, 25, 25, 7)) are
equivalent if and only if

I E—

/
T -

/
1 €L, x, —

ereo =0, z5—x3=0, zy3—exs=0,
with
1 if ] — z; is even,
€= . .
—1 if 2} — 21 is odd.

The quotient of R* by this equivalence relation is a manifold M, which may be identified
with the cotangent bundle to a Mobius stripe; its canonical symplectic 2-form is the pro-
jection of the 2-form —(dz; A dxs + dxs A dzs) on R*. But if, instead of that 2-form, we
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consider the 2-form dzq A dzg + dzs A dzy on R*, we see that by projection it defines a
nontrivial locally conformally symplectic bundle structure on M.

4. Jacobi bundles and homogeneous Poisson manifolds

The close relations between Jacobi manifolds and homogeneous Poisson manifolds
were already indicated in [2]. In fact, it appears that even closer relations exist between
Jacobi bundles and homogeneous Poisson manifolds. We use here the term “homogeneous
Poisson manifold” to agree with previous usage, though this name may be misleading. Let
us recall its definition

4.1. Definitions.

1. A homogeneous Poisson manifold (P,A,Z) is a Poisson manifold (P,A) with a
vector field Z on P such that
L(Z)A = —A.

2. Let (Py1,Aq,Z1) and (Ps, Ag, Z5) be two homogeneous Poisson manifolds. A strict
homogeneous Poisson map is a Poisson map ¢ : P, — P, such that, for every z € Py,

Top(Z1(2)) = Z2(p(z)) -

4.2. Example. Let G be a real, finite dimensional Lie algebra, and (G*, A) be its dual
space equipped with its canonical Lie-Poisson structure. We recall that the Poisson bracket
of two functions f and g € C*°(G*,R) is given by

{f.9}(2) = A(2)(df (), dg(x)) = (=, [df (x),dg()]), =€G",

where the differentials df (z) and dg(x) are considered as elements in G.
Let Z be the Liouville vector field on G*, i.e., the vector field given by Z(z) = z for
each x € G*. Then (G*, A, Z) is a homogeneous Poisson manifold.

A. Lichnerowicz [11] and A.-M. Justino [5] have shown that with any Jacobi manifold
(M, A, E) one can associate a homogeneous Poisson manifold (P, Ap, Z) by setting

P=RxM, Z(tx)= % . Ap(t,z) = exp(—t)(A(z) + Z(t,z) A E(z)),
where ¢ is the usual coordinate on R, and x € M.

This construction is not quite satisfactory, because using a product of M with R may
seem un-natural, and because it does not allow to lift as Poisson maps all the conformal
Jacobi maps, but only those whose conformal factor is strictly positive.

The following construction allows us to associate with any Jacobi bundle a homoge-
neous Poisson manifold, in a way which is more natural and fully functorial.

4.3. Proposition. Let (P,w,M) be a Jacobi bundle. There erxists on P a unique
Poisson structure (P, A), with the following property. Let s1 and s2 be two sections of ,
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F and F5 be the functions, defined on the open subset Py of P complementary to the zero
section, such that
si(r(z)) = Fi(z)z, i=1lor2, zeP.

Then the bracket {Fy, F»} is such that

{s1, 82} (7 (z)) = {F1, Fo}(2) 2, r€eEPR.

Moreover, this Poisson structure on P is homogeneous for the vector field Z on P, opposite
to the Liouville vector field (i.e., for each x € P, Z(x) is the vector tangent to the fiber
containing x and equal to —x).

Proof. Let U be an open subset of M on which there exists a nowhere vanishing
section sg : U — P, of w. Let f; and fy be the real valued functions on U such that

S1=f130, 52=f230-

By choosing sg, we have defined a Jacobi structure on U such that

{f1, fa}so = {f150, f250} -

We will denote by Ag, and Ej, the corresponding tensor and vector field.
The map from R x U onto 7~ }(U),

(A 9) = Aso(y)

is a trivialization of P over U. The functions F; and Fy, defined on PyN7~1(U), may thus
be considered as functions on (R\{0}) x U. They are given by

Fi(Ay)=A"fily), i=1lor2.
We want to define a Poisson tensor Ap on P, such that

Ap(Xy) ([dFi(\, ), dFa (N y)) = {F1, Fa} (A, y)
=AY 1, f}()
= X7 (Ko () (A2 (0), 2 ()

+ (W) ~ LI W), Bu®)))

Since dF;(\,y) = A1 df;(y) — A2 fi(y) d), and since (f1, f2) can be any pair of functions
on U, the only possible choice for Ap is
0

Ap(Ay) = Mo (y) = X’ 55 A By (1) (4)

This defines indeed a Poisson tensor on 7~ !(U), because the change of variables A = e~

yields

Ap(t,y) =e™ (Aso (y) + % A Es, (y)) ,
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which is the formula used by Lichnerowicz [11] and Justino [5], with Z = % = —)\%.
The above calculations are local, and show that Ap is a Poisson tensor. But the way
in which the Poisson structure on P was defined is global, so there is no need to verify
what happens when we replace the open subset U and the nowhere vanishing section sg
by other data U’ and sj: we know that under such a change, Ap remains invariant.
Moreover, the formula obtained above for Ap(\,y) shows that the Poisson structure,

initially defined on Py, extends smoothly to the zero section, where A p vanishes. Therefore

Ap defines a Poisson structure on the whole of P, and since Z = _)\ﬁ’ this Poisson
structure is homogeneous with respect to Z. 0

4.4. Proposition. Let (Py,m, M) and (Ps, 72, M3) be two Jacobi bundles. A smooth
map ¢ : P — P is a Jacobi bundle map if and only if it is a strict homogeneous Poisson
map (Py and P being endowed with their homogeneous Poisson structures defined in 4.3)
which maps every nonzero element in Py onto a nonzero element in Ps.

Proof. Let (P1,Ap,,Zp,) and (Py, Ap,, Zp,) be the homogeneous Poisson structures
on P; and P, defined in 4.3.

1. If ¢ is a Jacobi bundle map, its restriction to any fiber of 7, is a linear isomorphism
of that fiber onto a fiber of m3. Therefore ¢ maps every nonzero element in P; onto a
nonzero element in Py and satisfies

QO*Zl = Zz .

By using local trivializations of (P;, m;, M;), i = 1 or 2, and taking into account remark 3.2
and the local expressions of Ap, obtained in the proof of Proposition 4.3, we obtain easily

QO*AP1 = AP2 :

2. Conversely, if we assume that ¢ is a strict homogeneous Poisson map, it satisfies
P Zy =2y ;

thus its restriction to each fiber of 71 is a linear map of that fiber into a fiber of my. If in
addition we assume that ¢ maps every nonzero element in P; onto a nonzero element in
Ps, its restriction to each fiber of 7y is a linear isomorphism onto the corresponding fiber
of 9. In other words, ¢ is a vector bundle map. Let ¢ : My — Mj be the corresponding
base map.

Let s and s be two sections of mo, F» and Fj be the associated real valued functions
on Py = P minus the zero section, such that for each y € Py

spoma(y) = Fa(y)y, syoma(y) = Fy(y)y-
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Let s1 and s} be the sections of 7; such that so 09 = @ os1, shop = ¢ os). We observe
that the real valued functions on P;g = P; minus the zero section associated with s; and
s} are Fy o ¢ and Fj o ¢, respectively. By proposition 4.3, for each = € P;, we have

{82, 85} o pomi(x) = {s2,85} om0 p(x)
= ({F2, F3} o p(x))p(2)
= p({F2 09, Fjog}(a)z)

=@o {81,811} 071'1(.’13) .0

4.5. Remark. The homogeneous Poisson structure on the total space P of a Jacobi
bundle (P, 7, M) was already defined by F. Guédira and A. Lichnerowicz [4], and was ob-
tained independently in [12], where I defined it on Py only: I did not observe at that time
that it extends smoothly to the zero section. I became aware of that property (which is
quite clearly stated in the paper by F. Guédira and A. Lichnerowicz) by reading A. Wein-
stein’s paper [21]. Weinstein uses the same construction in two particular cases: when M
is a contact manifold, in which case he attributes that construction (already made in [12])
to Le Brun; when M is a symplectic or a Poisson manifold, in which case he obtains what
he calls a Heisenberg-Poisson manifold.

The following proposition shows that on a Jacobi bundle, one may associate a vector

field with every section.

4.6. Proposition. Let (P,m, M) be a Jacobi bundle. With every section s of ®, we
can associate a smooth vector field X5 on P, characterized by the following property. Let
(P,Ap,Z) be the homogeneous Poisson structure on P defined in 4.4, and F : Py — R be
the function, defined on Py = P minus the zero section, such that

som(z)=F(x)z forallze Fy.

Then X, restricted to Py is equal to Agg(dF). We will say that X, is the Hamiltonian
vector field on P associated with the section s.

Proof. The vector field Aﬂp(dF ) is defined on the open dense subset Py of P, so we
need only prove that it extends smoothly to the zero section. Let sg : U — P be a nowhere
vanishing section of 7, defined on an open subset U of M. We identify R x U with #—1(U),
by means of the map (A, z) — Aso(z). Let f: U — R be the unique function such that

s(y) = f(y)so(y) forallyeU.

On 7~ Y(U), identified with R x U, the function F may be written as

FAy)=A"f(y).

Using expression (4) of Ap, we obtain

AL(@AF A y)) = AL (df (1) + F(0) Eso(y) — (df (¥), Bso (¥))Z (A, 9) 4
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which proves that Agj(dF ) extends smoothly to the zero section. [

The following proposition states some properties of Hamiltonian vector fields.

4.7. Proposition. The assumptions and notations are those of proposition 4.6.

1. The Hamiltonian vector field X, associated with a section s of w is projectible by
w on M, i.e., there exists a unique vector field Xy on M such that m(X;) = X;.

2. The Hamiltonian vector field X, is tangent to the zero section, and its restriction
to that zero section (identified with M ) is equal to its projection Xs.

3. The map s — X5 is a Lie algebra homomorphism.

Proof.  All these properties are easy consequences of the local expressions given in
the proofs of 4.4 and 4.6. [

4.8. Remarks. The assumptions and notations are those of propositions 4.6 and 4.7.

1. Let U be an open subset of M on which the section s nowhere vanishes, and let
(U, Ay, Ey) be the corresponding Jacobi manifold structure on U, defined in remark 3.3.2.

Then the restriction of )Z's to U is equal to Ey.

2. The Hamiltonian vector field X, associated with any section s of 7w satisfy

[Z,X,]=0.

3. The map s — X, is a Lie algebra homomorphism from the Lie algebra of sections
of w into the Lie algebra of vector fields on M. This property follows from 4.7.3, since the
projection X, — X, is a Lie algebra homomorphism. However, s — X does not come
from a vector bundle map from P into T'M, because if f is a function on M and s a section
of m, X5 is not in general equal to fX,. In other words, (P, m, M) is not a Lie algebroid
in the sense of Pradines [13] [1].

4. Dazord and Sondaz define in [3] a Lie-Poisson structure as a vector bundle whose
total space is endowed with a Poisson structure which is homogeneous with respect to the
Liouville vector field. They show that the dual bundle of a Lie-Poisson structure is a Lie
algebroid (and conversely). This result is not valid for a Jacobi bundle (P, 7, M), because
the Poisson structure on P is homogeneous with respect to the opposite of the Liouville
vector field on P. If we consider the dual bundle P* of P, and the map which associates
with every nonzero element z of P the element « in the corresponding fiber of P* such
that (o, z) = 1, we obtain a Poisson structure on the open subset Py of P* complementary
to the zero section, which is homogeneous with respect to the Liouville vector field. But
that structure does not extend smoothly to the zero section. That explains why Jacobi
bundles are not Lie algebroids.
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